
About the CDIL 2-1

C H A P T E R 2

CDIL Interface 2

The Communications Desktop Integration Library (CDIL) is a small library
for Windows and Macintosh applications that need to communicate with
Newton OS devices. Operations are provided via a C language application
program interface (API). The data exchanged is free-form. That is, the CDIL
does not impose any sort of data format, nor does it imply any high, or
application, level protocols. All it provides is a stream-based
communications API for sending data to and receiving data from a Newton
device. This API turns around and works with transport specific APIs (such
as ADSP, TCP/IP, and MNP) to transfer the data.

About the CDIL 2

The CDIL provides a pipe between a Windows or Macintosh desktop
computer and a Newton device. The CDIL uses the passive listener model. In
this model the desktop application sets up the pipe, and waits for the
Newton device to initiate a connection. Once the connection is set up, both
sides can read and write bytes through the pipe, and terminate the
connection.

Figure 2-0
Listing 2-0
Table 2-0

C H A P T E R 2

CDIL Interface

2-2 About the CDIL

CDIL Compatibility 2
The following changes have been made:

kCDIL_Uninitialized

This state previously identified a pipe that had been
created but had never been used. Now it identifies a
NULL (non-created) pipe.

kCDIL_InvalidConnection
This state no longer exists.

kCDIL_Startup This state no longer exists.

kCDIL_Listening This state is unchanged.

kCDIL_ConnectPending
This state is unchanged.

kCDIL_Connected This state is unchanged.

kCDIL_Busy This state no longer exists.

kCDIL_Aborting This state no longer exists.

kCDIL_Disconnected
This state used to identify a pipe that used to be
connected, but is no longer. Now it identifies any
unconnected pipe, even if it’s never been used before.

kCDIL_Userstate This state no longer exists.

CommErr Replaced by DIL_Error.

CDInitCDIL Renamed to CD_Startup.

CDDisposeCDIL Renamed to CD_Shutdown.

CDCreateCDILObject Replaced by CD_CreateXXX suite of functions.

CDDisposeCDILObject
Renamed to CD_Dispose.

CDPipeInit Replaced by CD_CreateXXX suite of functions.

CDPipeDisconnect Renamed to CD_Disconnect.

CDPipeListen Renamed to CD_StartListening. Function returns
immediately; there is no asynchronous operation, so the

C H A P T E R 2

CDIL Interface

About the CDIL 2-3

timeout, completionHook, and refCon parameters have
been removed.

CDPipeAccept Renamed to CD_Accept.

CDPipeAbort Removed.

CDPipeRead Renamed to CD_Read. The eom, swapSize, destEncoding,
completionHook, and refCon parameters represent
functionality that is no longer available and have been
removed.

CDBytesInPipe Renamed to CD_BytesAvailable. Only the reporting of
bytes in the input buffer is supported, so the direction
parameter has been removed.

CDPipeWrite Renamed to CD_Write. The eom, swapSize, destEncoding,
completionHook, and refCon parameters represent

C H A P T E R 2

CDIL Interface

2-4 Using the CDIL

functionality that is no longer available and have been
removed.

CDIdle Renamed to CD_Idle.

CDGetPipeState Renamed to CD_GetState.

CDSetPipeState Removed. User states are no longer supported.

CDEncryptFunction Removed. Encryption is no longer supported at the
CDIL level.

CDDecryptFunction Removed. Encryption is no longer supported at the
CDIL level.

CDGetConfigStr Removed. Configuration parameters are no longer
necessarily specified via a configuration string.

CDGetPortStr Removed. Configuration parameters are no longer
necessarily specified via a configuration string.

CDGetTimeout Removed. Timeout values are no longer pipe state
variables.

CDSetApplication Removed. The CDIL no longer needs the application’s
HINSTANCE handle.

CDFlush Removed. This functionality could not be guaranteed
for all transport services.

CDPad Removed. This functionality was not required at the
CDIL level.

CDSetPadState Removed. This functionality was not required at the
CDIL level.

Using the CDIL 2

Creating a CDIL Session 2
You must bracket all calls to CDIL functions between calls to CD_Startup and
CD_Shutdown. You create a session by passing a pointer to a pipe object, a
CD_Handle *, to one of the pipe creation functions: CD_CreateADSP,
CD_CreateMNPSerial, CD_CreateTCP, and CD_CreateCTB. These functions create a

C H A P T E R 2

CDIL Interface

Using the CDIL 2-5

connection with the Newton device using the requested communication
service: AppleTalk, MNP Serial, TCP, or a Macintosh communication tool,
respectively. All of these connection services are available in Mac OS, only
the TCP and MNP Serial option are available in Windows.

Each pipe creation function has an associated checking function:
CD_CheckADSP, CD_CheckMNPSerial, CD_CheckTCP, and CD_CheckCTB. These
functions test to see if the appropriate service is available. They are however
only an indication of whether the respective pipe creation function will
succeed. They check to see if the library can be loaded and initialized, but
you cannot determine if the connection attempt will succeed until you try.
These functions allow an application to build a dynamic set of connection
options for the user to choose from.

Once you have created a pipe to the Newton device, it is in the
kCD_Disconnected state. You must set it to listening mode with the
CD_StartListening function, moving it to the kCD_Listening state. Once in
this mode, the pipe listens for a connection request from a Newton OS
device. When such a request is registered, the pipe is placed in the
kCD_ConnectionPending state by the CDIL. You should detect this condition,
and call CD_Accept to establish the connection. CD_Accept puts the pipe in the
kCD_Connected state. In this state, you can read and write bytes through the
pipe.

The CDIL can thus be seen as a finite state machine. The state diagram is
shown in Figure 2-1. You can use the CD_GetState function to determine the
current state of the pipe.

C H A P T E R 2

CDIL Interface

2-6 Using the CDIL

Figure 2-1 CDIL state diagram

Terminating a CDIL Session 2
You can terminate a CDIL session at any time by calling CD_Disconnect. This
places the pipe in the kCD_Disconnected state, and you are then able to
attempt to start a new session by calling CD_StartListening. The connection
can also be broken by the Newton device at any point, or fail due to some
sort of error. If the connection is broken by the Newton device, or due to
error, the pipe is also placed in the kCD_Disconnected state, unless it is
presently in the kCD_Connected state. In that case, the pipe is placed in the
kCD_DisconectPending state where you can still read any buffered bytes.

When you no longer need the pipe object call CD_Dispose to free any allocated
resources.

kCD_Uninitialized
kCD_Disconnected

kCD_Listening

kCD_ConnectPending

kCD_DisconnectPending

CD_CreateXXX()

CD_StartListening()

kCD_Connected

Operation canceled or error occurs

Newton device
sends signal

CD_Accept()

 Newton device disconnects

CD_Disconnect()
CD_Disconnect()

CD_Disconnect()

Error occurs or

C H A P T E R 2

CDIL Interface

Using the CDIL 2-7

Reading and Writing Through the Pipe 2
You can write to a pipe with the CD_Write function so long as it is in the
kCD_Connected state. The data is then buffered for you, and sent down the
pipe at the next call to either CD_FlushOutput, CD_Idle, CD_Read,
CD_Disconnect, or CD_BytesAvailable. The call to CD_Write can timeout. Each
pipe has an associated timeout period, which defaults to 30 seconds. If the
data cannot be sent within that period, CD_Write returns a kCD_Timeout error.
You can set the timeout period with CD_SetTimeout; timeouts are set on a per
pipe basis.

You can read data from the pipe with the CD_Read function so long the pipe is
in either the kCD_Connected or kCD_DisconnectPending states. You specify how
many bytes you wish CD_Read to get. CD_Read then blocks until that many
bytes are available, or the call to CD_Read times out. Using the
CD_BytesAvailable function, you can determined whether CD_Read would
block.

As data is received from the Newton device, it is buffered by the CDIL at
every possibility. You can explicitly allow the CDIL to buffer data by calling
CD_Idle. This buffering is also performed by other CDIL functions, such as
CD_BytesAvailable, since they present the CDIL with the opportunity to
buffer this data. The underlying communication service may have a
fixed-size buffer, in which case, if the Newton sends data too much data, the
data could be lost. For this reason, you should call CD_Idle frequently to
allow the CDIL to buffer the data.

Error Handling 2
Almost all CDIL functions return an error code. The code kDIL_NoError,
which equals 0, indicates success. The functions descriptions in “CDIL
Reference” (page 2-9) list the error codes each particular function could
return if an error occurs. If an error occurs in one of the transports that the
CDIL uses to implement its pipe, TCP for example, the kCD_PlatformError
code is returned. In this case, you can call CD_GetPlatformError to retrieve the
error code returned by the particular transport.

C H A P T E R 2

CDIL Interface

2-8 Using the CDIL

Code Example 2
The code in Listing 2-1 shows the skeleton of a CDIL session, without error
checking.

Listing 2-1 A CDIL code example

CD_Handle pipe;
CD_State state;
char dataBuffer[256];
long count;

CD_Startup(); // Initialize the library
CD_CreateADSP(&pipe, NULL, NULL); // Create a connection object
CD_StartListening(pipe); // Have that object listen for a

// connection from a Newton device

while (CD_GetState(pipe) == kCD_Listening) //Wait for a connect request
{

// If you are displaying a dialog box telling the user to
// initiate a connection from a Newton OS device, you could
// check for clicks on a Cancel button here.

}
if (CD_GetState(pipe) == kCD_ConnectPending)
{

CD_Accept(pipe); // Accept the connect request
MyFnToGetDataToSend(dataBuffer);
CD_Write(pipe, dataBuffer, sizeof(dataBuffer));
// This step is optional. We'd execute it if we wanted to
// ensure that there were 100 bytes available before calling
// CD_Read, which would otherwise block.
do
{

CD_Idle(pipe);
CD_BytesAvailable(pipe, &count);
// You could check for clicks on menus or buttons, or call
// WaitNextEvent here.

}
while (count<100);
CD_Read(pipe, dataBuffer, 100); // Assumes we expect 100 bytes back
CD_Disconnect(pipe); // Break the connection.

}
CD_Dispose(pipe); // Delete the pipe object
CD_Shutdown(); // Close the library

C H A P T E R 2

CDIL Interface

CDIL Reference 2-9

CDIL Reference 2

Type Definitions 2

CD_Handle A pipe object.

Constants 2

CDIL States 2

These values are returned by CD_GetState:

kCD_Uninitialized The pipe has not been initialized.

kCD_Disconnected The pipe has just been created, or it has been passed to
CD_Disconnect.

kCD_Listening The pipe is listening for a connection request from a
Newton device.

kCD_ConnectPending The pipe has received a connection request from a
Newton device.

kCD_Connected The pipe is fully connected to a Newton device and can
be used for data exchange.

kCD_DisconnectPending

The connection has been broken on the other end. Either
the Newton device has disconnected, or a
communications or network error has occurred. In this
state, any buffered data can still be retrieved. The
buffered data will be flushed when you call
CD_Disconnect.

C H A P T E R 2

CDIL Interface

2-10 CDIL Reference

Timeout Intervals 2

These values can be used for the timeoutInSecs parameter to CD_SetTimout:

kCD_DefaultTimeout The default timeout period of 30 seconds.

kCD_NoTimeout No timeout; calls to CD_Read and CD_Write do not
timeout.

Error Codes 2
kDIL_NoError (0)
kDIL_ErrorBase (-98000)
kDIL_OutOfMemory (kDIL_ErrorBase - 1)
kDIL_InvalidParameter (kDIL_ErrorBase - 2)
kDIL_InternalError (kDIL_ErrorBase - 3)
kDIL_ErrorReadingFromPipe (kDIL_ErrorBase - 4)
kDIL_ErrorWritingToPipe (kDIL_ErrorBase - 5)
kDIL_InvalidHandle (kDIL_ErrorBase - 6)

kCD_ErrorBase (kDIL_ErrorBase - 200)

kCD_CDILNotInitialized (kCD_ErrorBase - 1)
kCD_ServiceNotSupported (kCD_ErrorBase - 2)
kCD_BadPipeState (kCD_ErrorBase - 3)
kCD_Timeout (kCD_ErrorBase - 4)
kCD_PipeDisconnected (kCD_ErrorBase - 5)
kCD_IndexOutOfRange (kCD_ErrorBase - 6)
kCD_BufferTooSmall (kCD_ErrorBase - 7)
kCD_PlatformError (kCD_ErrorBase - 8)

/* Windows-specific error codes */
kCD_TCPCantFindLibraryFns (kCD_ErrorBase - 20)
kCD_TCPInsufficientVersion (kCD_ErrorBase - 21)
kCD_TCPNoSockets (kCD_ErrorBase - 22)

C H A P T E R 2

CDIL Interface

CDIL Reference 2-11

Functions 2

CD_Startup 2

DIL_Error CD_Startup()

Initializes the CDIL library.

return value An error code.

DISCUSSION

This call makes sure that any low-level transport layers (for example: ADSP,
TCP/IP, MNP) are available and properly initialized. If none are available or
none can be initialized, this function returns an error.

This function is usually called once at the start of your program. However,
you can call it as many times as you want as long as you call CD_Shutdown an
equal number of times.

ERROR CODES

kCD_PlatformError
kCD_OutOfMemory

CD_Shutdown 2

DIL_Error CD_Shutdown()

Closes any transport layers opened and initialized in CD_Startup, and closes
and disposes of all open pipes.

return value An error code.

DISCUSSION

This function must be called once for every time you called CD_Startup.
Usually, you just call it once at the end of your program. However, you can
call it as many times as you want, as long as you don’t call it more times that
you’ve called CD_Startup. If this is the last call to CD_Shutdown, then all
memory allocated by the CDIL since CD_Startup was called is deallocated.

C H A P T E R 2

CDIL Interface

2-12 CDIL Reference

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError

CD_CheckADSP 2

DIL_Error CD_CheckADSP()

Determines whether the ADSP service is available.

return value An error code.

DISCUSSION

This function provides an indication of whether a call to CD_CreateADSP will
succeed or fail.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported

CD_CheckCTB 2

DIL_Error CD_CheckCTB(const char* toolName)

Determines whether the CTB service is available.

toolName The name of the tool as a C string.

return value An error code.

DISCUSSION

This function provides an indication of whether a call to CD_CreateCTB will
succeed or fail.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported
kDIL_InvalidParameter

C H A P T E R 2

CDIL Interface

CDIL Reference 2-13

CD_CheckMNPSerial 2

DIL_Error CD_CheckMNPSerial()

Determines whether the MNP service is available.

return value An error code.

DISCUSSION

This function provides an indication of whether a call to CD_CreateMNPSerial
will succeed or fail.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported

CD_CheckTCP 2

DIL_Error CD_CheckTCP()

Determines whether the TCP service is available.

return value An error code.

DISCUSSION

This function provides an indication of whether a call to CD_CreateADSP will
succeed or fail.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported
kCD_TCPCantFindLibraryFns // these bottom three are only returned
kCD_TCPInsufficientVersion // in the Windows version
kCD_TCPNoSockets

C H A P T E R 2

CDIL Interface

2-14 CDIL Reference

CD_GetSerialPortName 2

DIL_Error CD_GetSerialPortName(long index, char* buffer, long*
bufLen)

Returns a user-displayable C string containing the name of a selectable serial
port.

index A zero-based value indicating the port for which you
want a string.

buffer Where to store the C string. You may pass in NULL if
you only want to query for the length of the string.

bufLen When you call this function *bufLen should contain the
number of bytes of the empty buffer.
CD_GetSerialPortName sets this value to the number of
bytes of the string that holds the port name, including
the NULL terminator.

return value An error code.

DISCUSSION

Normal usage of this function is to start with zero, incrementing index, until
the function returns kCD_IndexOutOfRange.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_IndexOutOfRange
kCD_BufferTooSmall
KDIL_InvalidParameter

CD_CreateADSP 2

DIL_Error CD_CreateADSP (CD_Handle* pipe, const char* name,
const char* type)

Creates an ADSP-based communications pipe.

pipe Where to store the new pipe.

name The name of the ADSP connection. This string is what
appears in the Chooser list on the Newton OS device. If

C H A P T E R 2

CDIL Interface

CDIL Reference 2-15

you pass NULL for this parameter, the CDIL uses a
default name based on your desktop computer’s
preferences (for instance, on a Macintosh, it will use the
strings specified in the File Sharing control panel).

type The connection type. This is searched for by the Chooser
on the Newton OS device. If you pass NULL for this
parameter, the CDIL uses the type specified by the
Connection/Dock application.

return value An error code.

SPECIAL CONSIDERATIONS

ADSP pipes are only available on the Mac OS platform.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported
kDIL_InvalidParameter
kDIL_OutOfMemory

CD_CreateCTB 2

DIL_Error CD_CreateCTB (CD_Handle* pipe, const char* toolName,
const char* configString)

Creates a Macintosh Communication Toolbox-based communications pipe.

pipe Where to store the new pipe.

toolName The name of the communication tool.

configString A tool-dependent configuration string.

return value An error code.

SPECIAL CONSIDERATIONS

Comm toolbox based pipes are only available on the Mac OS platform. See
the Comm Toolbox documentation for valid configuration strings.

C H A P T E R 2

CDIL Interface

2-16 CDIL Reference

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported
kDIL_InvalidParameter
kDIL_OutOfMemory

CD_CreateMNPSerial 2

DIL_Error CD_CreateMNPSerial(CD_Handle* pipe, long port, long
baud);

Creates a serial communications pipe based on the MNP protocol.

pipe Where to store the new pipe.

port The serial port to use.

baud The baud rate to communicate at in bytes per second.
Possible values are listed in Table 2-1.

return value An error code.

DISCUSSION

MNP is a packet-based protocol that ensures delivery of your data using
compression and error correction.

Table 2-1 Possible baud rates for MNP serial connection

Windows

110 300 600 1200 2400

4800 9600 14400 19200 38400

5600 57600 115200 128000 256000

Macintosh

110 300 1200 2400 4800

9600 19200 38400 57600

C H A P T E R 2

CDIL Interface

CDIL Reference 2-17

Note

Not all of these baud rates are compatible with current
Newton OS devices. They merely represent what is possible
on the desktop platform. ◆

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_ServiceNotSupported
kDIL_InvalidParameter
kDIL_OutOfMemory

CD_CreateTCP 2

DIL_Error CD_CreateTCP(CD_Handle* pipe, long port)

Creates a TCP-based communications pipe.

pipe Where to store the new pipe.

port The TCP port to listen on. Note that once the connection
is made, data transfer actually occurs on a different,
randomly chosen, port. This frees up the port specified
in this parameter for future connections.

return value An error code.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kDIL_InvalidParameter
kDIL_OutOfMemory
kCD_TCPCantFindLibraryFns // these bottom three are only returned
kCD_TCPInsufficientVersion // in the Windows version
kCD_TCPNoSockets

C H A P T E R 2

CDIL Interface

2-18 CDIL Reference

CD_Dispose 2

DIL_Error CD_Dispose(CD_Handle pipe)

Disposes of a communications pipe created by CD_CreateADSP,
CD_CreateMNPSerial, CD_CreateCTB, or CD_CreateTCP.

pipe The pipe to dispose of.

return value An error code.

DISCUSSION

The pipe passed to CD_Dispose can be in any state. If appropriate, the pipe is
disconnected or removed from a listening state before it is deleted.

After this call, the reference to the pipe is invalid and should no longer be
used.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kDIL_InvalidParameter
kDIL_InvalidHandle

CD_Disconnect 2

DIL_Error CD_Disconnect(CD_Handle pipe)

Puts the specified pipe in the kCD_Disconnected state.

pipe The pipe to disconnect.

return value An error code.

DISCUSSION

If the pipe is listening, it stops listening. If the pipe is connected, it is
disconnected. In all cases, the state of the pipe after making this call is
kCD_Disconnected. Any internally buffered data is flushed and can no longer
be read with CD_Read.

ERROR CODES

kCD_CDILNotInitialized

C H A P T E R 2

CDIL Interface

CDIL Reference 2-19

kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle

CD_StartListening 2

DIL_Error CD_StartListening(CD_Handle pipe)

Makes the pipe start listening for a connection for a Newton device.

pipe The pipe to start listening.

return value An error code.

DISCUSSION

After the successful completion of this call, the pipe is put in the
kCD_Listening state.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle

CD_Accept 2

DIL_Error CD_Accept(CD_Handle pipe)

Makes the pipe accept a pending connection.

pipe The pipe to accept the connection on. This pipe should
be in the kCD_ConnectPending state.

return value An error code.

C H A P T E R 2

CDIL Interface

2-20 CDIL Reference

DISCUSSION

After the successful completion of this call, the pipe is fully connected, its
state will be kCD_Connected, and it can be used to exchange data with a
Newton OS application.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle

CD_Read 2

DIL_Error CD_Read(CD_Handle pipe, void* p, long count)

Reads bytes from a pipe.

pipe The pipe to read data from.

p A pointer to the data buffer.

count The number of bytes to read from the pipe.

return value An error code.

DISCUSSION

Note that a pipe need not be connected in order for bytes to be read from it.
It is possible for a pipe to have buffered data received from a Newton OS
device before the connection was broken. As long as the pipe’s state is
kCD_Connected or kCD_DisconnectPending, clients of the CDIL are still able to
retrieve these bytes.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter

C H A P T E R 2

CDIL Interface

CDIL Reference 2-21

kDIL_InvalidHandle
kDIL_OutOfMemory

CD_BytesAvailable 2

DIL_Error CD_BytesAvailable(CD_Handle pipe, long* count)

Returns the number of bytes available for reading from the pipe.

pipe The pipe.

count A pointer to where the number of bytes available in the
pipe should be stored by this function.

return value An error code.

DISCUSSION

Note that a pipe need not be connected in order for bytes to be read from it.
It is possible for a pipe to have buffered data received from a Newton device
before the connection was broken. As long as the pipe’s state is
kCD_Connected or kCD_DisconnectPending, clients of the CDIL are still able to
retrieve these bytes.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle
kDIL_OutOfMemory

C H A P T E R 2

CDIL Interface

2-22 CDIL Reference

CD_Write 2

DIL_Error CD_Write(CD_Handle pipe, const void* p, long count)

Sends the given bytes to the Newton device.

pipe The pipe to write data to.

p A pointer to the data buffer.

count The number of bytes to write to the pipe.

return value An error code.

DISCUSSION

The data is not actually sent each time CD_Write is called. It is buffered until
either the buffer is full, or a non-CD_Write call is executed: CD_Idle, CD_Read,
CD_Disconnect, or CD_BytesAvailable.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle
kDIL_OutOfMemory

CD_FlushOutput 2

DIL_Error CD_FlushOutput(CD_Handle pipe)

Flushes any buffered data written to a pipe.

pipe The pipe to flush.

return value An error code.

DISCUSSION

To increase performance, the CDIL buffers all outgoing data. This data
remains in the desktop computer until you call CD_FlushOutput to explicitly
send to the Newton OS device. Otherwise, the data is implicitly sent on the

C H A P T E R 2

CDIL Interface

CDIL Reference 2-23

next call to CD_Idle, CD_Read, CD_Disconnect, or CD_BytesAvailable. Note that
the data could also be sent if the buffer is filled.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle
kDIL_OutOfMemory

CD_Idle 2

DIL_Error CD_Idle(CD_Handle pipe)

Allows the CDIL to service an open connection.

pipe The pipe to service.

return value An error code.

DISCUSSION

If the Newton device is sending data very rapidly, you must call this function
frequently to buffer that data. The CDIL uses a dynamically sized buffer, but
the underlying communication tool may use a statically sized one. If you
don’t call CD_Idle frequently enough, you may lose data. On the other hand,
you unnecessarily slow down your application if you call this function too
frequently. Frequencies on the order of a tenth of second should be adequate.
In general you calling this function once each time through the main event
loop, is sufficient.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle

C H A P T E R 2

CDIL Interface

2-24 CDIL Reference

kDIL_OutOfMemory

CD_GetState 2

CD_State CD_GetState(CD_Handle pipe)

Updates and returns the state of the pipe.

pipe The pipe whose state you are interested in.

return value A state constant as listed in “CDIL States” (page 2-9).

DISCUSSION

There is no guarantee that two calls to CD_GetState made one right after the
other will return the same value. In particular, the state can always change
from kCD_Listening to kCD_ConnectPending or kCD_DisconnectPending, or from
kCD_Connected to kCD_DisconnectPending.

CD_GetPlatformError 2

long CD_GetPlatformError(CD_Handle pipe)

Returns the platform-specific error code which caused another CDIL
function to return kCD_PlatformError.

pipe The pipe on which the error occurred. This parameter
can be NULL if the error occurred is not associated with a
pipe, for example, if a CD_CreateXXX function failed.

return value A long value containing the platform specific error.

DISCUSSION

The CDIL functions call a wide variety of platform-specific transport
functions to implement their functionality. If one of these functions returns
an error, the CDIL function returns kCD_PlatformError. You can then, call
CD_GetPlatformError to retrieve the actual error code.

ERROR CODES

A platform specific error
kCD_CDILNotInitialized

C H A P T E R 2

CDIL Interface

CDIL Reference 2-25

CD_SetTimeout 2

DIL_Error CD_SetTimeout(CD_Handle pipe, long timeoutInSecs)

Sets the timeout period for CD_Read and CD_Write calls in a pipe.

pipe The pipe whose timeout period is being set.

timeoutInSecs The timeout period in seconds. The following constants
are defined for you: kCD_DefaultTimeout for the default
30 second period, and kCD_NoTimeout if you want calls to
CD_Read and CD_Write wait indefinitely.

return value An error code.

DISCUSSION

When the CDIL pipe is created, it is initialized with a default timeout period
of 30 seconds. This timeout period is used to control CD_Read and CD_Write
calls (and, indirectly, any flushing of outgoing data). Timeout values are
specified on a per-pipe basis.

For CD_Read, if the requested number of bytes are not available after the
timeout period, a kCD_Timeout error is returned and no bytes will be
transferred. For CD_Write, if no data can be sent after the timeout period, a
kCD_Timeout error is returned.

The timeout does not occur, if the data is presently being transferred. That is,
a long operation does not fail due to a timeout. Note that an attempt is made
to send data even if the timeout is set to zero seconds.

ERROR CODES

kCD_CDILNotInitialized
kCD_PlatformError
kCD_BadPipeState
kCD_TimeOut
kCD_PipeDisconnected
kDIL_InvalidParameter
kDIL_InvalidHandle

C H A P T E R 2

CDIL Interface

2-26 CDIL Summary

CDIL Summary 2

Type Definitions 2
CD_Handle

Constants 2

CDIL States 2
kCD_Uninitialized
kCD_Disconnected
kCD_Listening
kCD_ConnectPending
kCD_Connected
kCD_DisconnectPending

Timeout Intervals 2
kCD_DefaultTimeout
kCD_NoTimeout

Error Codes 2
kDIL_NoError
kDIL_ErrorBase
kDIL_OutOfMemory
kDIL_InvalidParameter
kDIL_InternalError
kDIL_ErrorReadingFromPipe
kDIL_ErrorWritingToPipe
kDIL_InvalidHandle
kCD_ErrorBase
kCD_CDILNotInitialized
kCD_ServiceNotSupported
kCD_BadPipeState
kCD_Timeout

C H A P T E R 2

CDIL Interface

CDIL Summary 2-27

kCD_PipeDisconnected
kCD_IndexOutOfRange
kCD_BufferTooSmall
kCD_PlatformError
kCD_TCPCantFindLibraryFns
kCD_TCPInsufficientVersion
kCD_TCPNoSockets

Functions 2
DIL_Error CD_Startup()
DIL_Error CD_Shutdown()
DIL_Error CD_CheckADSP()
DIL_Error CD_CheckCTB(const char* toolName)
DIL_Error CD_CheckMNPSerial()
DIL_Error CD_CheckTCP()
DIL_Error CD_GetSerialPortName (long index, char* buffer, long* bufLen)
DIL_Error CD_CreateADSP (CD_Handle* pipe, const char* name,

const char* type)
DIL_Error CD_CreateCTB (CD_Handle* pipe, const char* toolName,

const char* configString)
DIL_Error CD_CreateMNPSerial(CD_Handle* pipe, long port, long baud)
DIL_Error CD_CreateTCP(CD_Handle* pipe, long port)
DIL_Error CD_Dispose(CD_Handle pipe)
DIL_Error CD_Disconnect(CD_Handle pipe)
DIL_Error CD_StartListening(CD_Handle pipe)
DIL_Error CD_Accept(CD_Handle pipe)
DIL_Error CD_Read(CD_Handle pipe, void* p, long count)
DIL_Error CD_BytesAvailable(CD_Handle pipe, long* count)
DIL_Error CD_Write(CD_Handle pipe, const void* p, long count)
DIL_Error CD_FlushOutput(CD_Handle pipe)
DIL_Error CD_Idle(CD_Handle pipe)
CD_State CD_GetState(CD_Handle pipe)
long CD_GetPlatformError(CD_Handle pipe)
CD_Error CD_SetTimeout (CD_Handle pipe, long timeoutInSecs)

C H A P T E R 2

CDIL Interface

2-28 CDIL Summary

