
About the PDIL 4-1

C H A P T E R 4

PDIL Interface 4

The Protocol Desktop Integration Library (PDIL) is a library designed to
make it easy (and possible) for desktop developers to write applications to
exchange data with Newton devices by communicating with the built-in
Dock (Connection) application.

About the PDIL 4

The PDIL allows a desktop application to communicate with the Dock
application on a Newton 2.x device. The PDIL supports multiple sessions to
different Newton devices. The PDIL also supports password protection to
your application, where a password needs to be entered on the Newton
device before a PDIL session is created.

The PDIL requires the use of the FDIL. The PDIL and the Dock application
trade NewtonScript objects, which are FDIL objects on the desktop. The
PDIL also requires the use of some communication scheme. You can use the
CDIL, but this is not required. You may implement this link in some other
manner.

The PDIL provides functions to:

■ get a list of stores and soups

Figure 4-0
Listing 4-0
Table 4-0

C H A P T E R 4

PDIL Interface

4-2 Using the PDIL

■ add, empty, and delete soups

■ read, edit, and create new entries in a soup

■ perform soup queries and navigate soup with cursors

■ call global functions and root view methods

■ download packages

■ extend the protocol to execute an arbitrary NewtonScript function object

Using the PDIL 4

Creating a PDIL Session 4
You must initialize the PDIL by calling PD_Startup before calling any other
PDIL functions. When you are finished using the PDIL, you should call
PD_Shutdown to free up resources.

To create a session you will need to provide three callback functions to read
and write bytes to the Newton device, and to report the number of bytes
available for reading. You would normally simply turn around and call the
CDIL functions CD_Read, CD_Write, and CD_BytesAvailable, but you may also
choose to implement these callbacks in any way you choose.

You create a PDIL session with PD_CreateSession, passing it your three
callback functions. At that point you can perform any of the actions allowed
by the PDIL/Dock protocol, such as performing a soup query, or calling a
global function.

When the session is in progress, and you are not actively communicating
with the Dock application, you should call PD_Idle to allow the PDIL to
attend to any unexpected request from the Dock application. When you are
finished using your PDIL session, call PD_Dispose to terminate the connection.

You can optionally provide password protection to your desktop application.
You must simply supply PD_CreateSession with a string for the correct
password. The Dock application puts up a password slip for the user, and

C H A P T E R 4

PDIL Interface

Using the PDIL 4-3

deals with incorrect passwords. Up to three attempts at the proper password
are allowed.

Obtaining Information About the Newton Device 4
There are two functions available to obtain information about the Newton
device. PD_GetNewtonName retrieves the name on one of the owner cards, the
first card entered. PD_GetNewtonInfo returns a PD_NewtonInfo struct with the
information about system parameters; see “PD_NewtonInfo” (page 4-15).
This information is similar to what is returned by the NewtonScript function
Gestalt using the kGestalt_SystemInfo selector.

Setting the Current Store 4
To manipulate any soup-based data in a Newton device, you must first set
the current store. There is no support for union soups in the PDIL. You can
operate on soups on only one store at a time. If you have, or might possibly
have, soups that span more than one store, you must iterate over these stores
yourself.

The PDIL allows you to retrieve a list of all stores on a Newton device with
PD_GetAllStores, or the user-selected default store with PD_GetDefaultStore.
You set the current store with PD_SetCurrentStore. Once you have set the
current store you may perform the following operations:

■ Retrieve a list of all soups on the store with PD_GetAllSoups. This list
contains the name and signature of all soups on the current store.

■ Create a new soup with PD_CreateSoup, and delete or empty an existing
soup with PD_DeleteSoup and PD_EmptySoup.

■ Set a soup to be the current soup with PD_SetCurrentSoup, allowing you to
use the soup functions; see “Using the Soup Functions” (page 4-4).

■ Query a soup with PD_Query, creating a cursor that iterates over the entries
in the soup; see “Soup Queries” (page 4-5). Querying a soup also sets the
current soup, allowing you to use the soup functions.

C H A P T E R 4

PDIL Interface

4-4 Using the PDIL

Using the Soup Functions 4
Once you have set the current soup with PD_SetCurrentSoup (or by
performing a soup query), you can:

■ Get a list of all entries on the current soup, with PD_GetEntryIDs. This
returns a list of the unique integer ID of all entries in the soup. With an
entry’s ID number you can call PD_GetEntry to retrieve the soup entry,
PD_DeleteEntryID or PD_DeleteEntryIDList to delete one or more entries
from the current soup, and PD_ChangeEntry to store an edited soup entry
back on the Newton device.

■ Add entries to the current soup with PD_AddEntry.

■ Get a list of the current soup’s indexes with PD_GetSoupIndexes. For
information on soup indexes, see “Indexes” (page 11-8) in Newton
Programmer’s Guide.

■ Retrieve and set the soup info frame. Each soup contains an information
frame. You retrieve the information frame for the current soup with
PD_GetSoupInfo. You can set the information with PD_SetSoupInfo. You
must be very careful that you do not erase important information when
setting the soup information frame. In general, you should read in the
information frame with PD_GetSoupInfo, alter a limited number of slots,
and use this same frame when calling PD_SetSoupInfo. If you add any slots
to this frame, you should append your developer signature to the slot
name, to guarantee uniqueness.

Listing 4-1 Iterating through every entry on a Newton device

long i, j, k;
FD_Handle allStores, allSoups, allEntryIDs, curEntry;

PD_GetAllStores(gSession, &allStores);

for (i = 0; i < FD_GetLength(allStores); i++)
{

PD_SetCurrentStore(gSession, FD_GetArraySlot(allStores, i));
PD_GetAllSoups(gSession, &allSoups);
for (j = 0; j < FD_GetLength(allSoups); j++)
{

C H A P T E R 4

PDIL Interface

Using the PDIL 4-5

//we need the soup name which is the first element in the
//array that represents a soup
PD_SetCurrentSoup(gSession,

FD_GetArraySlot(FD_GetArraySlot(allSoups, j),0));
PD_GetEntryIDs(gSession, &allEntryIDs);
for (k = 0; k < FD_GetLength(allEntryIDs); k++)
{

PD_GetEntry(gSession, &curEntry,
FD_GetInt(FD_GetArraySlot(allEntryIDs,k)));

// do something with each entry
//
FD_DeepDispose(curEntry);

}
FD_DeepDispose(allEntryIDs);

}
FD_DeepDispose(allSoups);

}
FD_DeepDispose(allStores);

Soup Queries 4
You perform a query on a soup with PD_Query. PD_Query accepts as input the
soup’s name to query and a query spec, and creates a cursor that iterates the
soup’s entries matching the query spec. For information on query specs, see
“Queries” (page 11-10) in Newton Programmer’s Guide.

Once you have a soup cursor, you can use it to retrieve entries with PD_Entry.
The PD_CountEntries function calculates the number of entries a cursor
iterates over. If you make a change in a soup entry, you can write this change
back to the Newton device with PD_ChangeEntry. Entries are added to the
soup you have performed a query on with PD_AddEntry. Entries are deleted
from the soup with PD_DeleteEntry and PD_DeleteEntryList.

The following navigation functions are provided:

PD_Next Moves cursor forward one entry.

PD_Prev Moves cursor backward one entry.

PD_Reset Moves cursor to the first entry.

PD_ResetToEnd Moves cursor to the last entry.

PD_Move Moves cursor to the n entries over.

PD_GotoKey Moves cursor to the entry that contains a particular
value in the slot that is the basis of this query.

C H A P T E R 4

PDIL Interface

4-6 Using the PDIL

Note

The functions that move a cursor around retrieve the entry
that the cursor now points to. You are responsible for calling
FD_DeepDispose on the soup entries retrieved. ◆

Listing 4-2 Performing a soup query

FD_Handle myQuerySpec, curEntry, thinCrustPizzas, allStores, soupName;
PD_Cursor myCursor;

thinCrustPizzas = FD_MakeArray(0,NULL);

soupName = FD_MakeString("pizzaSoup");

myQuerySpec = FD_MakeFrame ();
FD_SetFrameSlot (myQuerySpec, "indexPath", FD_MakeSymbol("crust"));
FD_SetFrameSlot (myQuerySpec, "beginKey", FD_MakeSymbol("thin"));
FD_SetFrameSlot (myQuerySpec, "endKey", FD_MakeSymbol("thin"));

//we search only the internal store - the 0th element
PD_GetAllStores(gSession, &allStores);
PD_SetCurrentStore(gSession, FD_GetArraySlot(allStores, 0));

PD_Query (gSession, &myCursor, soupName , myQuerySpec);
PD_Entry (myCursor, &curEntry);

while (FD_NotNIL(curEntry))
{

FD_AppendArraySlot (thinCrustPizzas, curEntry);
PD_Next (myCursor, &curEntry);

}

PD_DisposeCursor (myCursor);

FD_DeepDispose (thinCrustPizzas);
FD_DeepDispose (allStores);
FD_DeepDispose (myQuerySpec);
FD_Dispose (soupName);

C H A P T E R 4

PDIL Interface

Using the PDIL 4-7

Calling Global Functions and Root View Methods 4
The PD_CallGlobalFunction and PD_CallRootMethod functions allow you to
execute global functions and root view methods on a Newton device.

Listing 4-3 Calling global functions and root view methods on a Newton device

FD_Handle result; //result returned by function calls
FD_Handle params; //parameters sent to these functions

// turn on the Newton device’s backlight
params = FD_MakeArray(0, NULL);
FD_AppendArraySlot(params, FD_MakeInt(1));
PD_CallGlobalFunction(gSession, "Backlight", params, &result);
FD_DeepDispose(result);

// make the Newton device beep
FD_RemoveArraySlot(params,0);
err = PD_CallRootMethod(gSession, "SysBeep", params, &result);
FD_DeepDispose(result);
FD_DeepDispose(params);

Using Protocol Extensions 4
The Dock application can service PDIL requests for a set number of actions.
You can extend this set by installing a protocol extension, which is a
NewtonScript function executed at the request of a desktop application. The
protocol extension is passed in an arbitrary set of parameters and must
return a NewtonScript object.

The function object that is the protocol extension is created in NTK as a
stream file. Create a project containing a text file that assigns a function
object to a variable. Then set the project output to stream file, and the Result
field to that variable that contains the function object.

This function is passed in an endpoint object as it’s sole argument. You call
this endpoint’s ReadCommandData method to retrieve the “parameters” sent by
the PDIL. Your protocol extension should perform a small set of operations,
since the lower level protocols need to communicate every few seconds or
they time out. Your code must catch any exception thrown, since an

C H A P T E R 4

PDIL Interface

4-8 Using the PDIL

uncaught exception could crash the Dock application. It must also call the
endpoint’s WriteCommand method to return a value to the PDIL. It should also
not write, nor read in, a large amount of data. Furthermore, you should
minimize the use of the NewtonScript heap; the Dock application uses quite
a bit, so there is not much left for your protocol extension.

You read in the function object from the stream file with FD_Unflatten. You
can then load in the protocol extension with PD_LoadExtension, passing it the
FDIL object retrieved with FD_Unflatten and a long value used as the ID of
this protocol extension. These IDs are usually specified as four characters,
such as 'MyID'; Apple reserves the all-lowercase IDs.

You then call the protocol extension with PD_CallExtension. This function
accepts as arguments the protocol extension’s ID, an FDIL array with the
parameters, and a pointer to an FDIL object that is set to what the protocol
extension returns.

You can call PD_RemoveExtension to remove the protocol extension, but need
not, since it is removed automatically when the PDIL session ends. You may
want to call it to free up heap space, however.

Listing 4-4 An example protocol extension, calling an application’s method

// The protocol extension; this code should be compiled by NTK to
// produce a stream file. It calls an application’s method, and
// returns the result.
setResultFieldToThisVariable := func (ep)
begin

try
local params := ep:ReadCommandData();
local result := if GetRoot().(myAppSym) exists and params then

Perform(GetRoot().(myAppSym),'MethodName,params);
onexception |evt.ex| do

result := nil;
ep:WriteCommand("MyID", result, true);

end;

// This C code loads and calls the protocol extension
FILE * streamFile;
FD_Handle ext, params, result;

C H A P T E R 4

PDIL Interface

Using the PDIL 4-9

streamFile = fopen(gStreamFileName, "rb");
ext = FD_Unflatten(ReadFromDiskCallBack, streamFile);
fclose(streamFile);
PD_LoadExtension(gSession, 'MyId', ext);
PD_CallExtension(gSession, 'MyId', params, &result);

Your protocol extension may return more than one value, that is call the
WriteCommand method more than once. The first time it is called, the value
returned is passed out through the outResults parameter to PD_CallExtension.
You are informed of subsequent values returned by your protocol extension
by PD_Idle. When your protocol extension returns subsequent values,
PD_Idle returns the extension ID instead of a status or error code. You can
then call PD_GetNewtonData to retrieve that value. This process is exemplified
in Listing 4-5.

Listing 4-5 Returning more than one value from a protocol extension

PD_CallExtension(gSession, myID, myParams, &myResult);
// myResult gets the first value returned.

while (true)
{

status = PD_Idle(gSession);

//check for expected return command
if (status == myID)
{

PD_GetNewtonData(gSession, &myResult2);
break;

}
}

Loading Packages 4
The PD_LoadPackage function loads a package to a Newton device from a
desktop package file. You must provide a function to read the package file.
This function is in addition to the read, write, and status functions you
provide to create a PDIL session.

C H A P T E R 4

PDIL Interface

4-10 Using the PDIL

Listing 4-6 Downloading a package

/* This is the callback */
DIL_Error ReadPackage(void* buf, long amt, void* userData)
{

fread(buf, 1, amt, (FILE*)userData);
return kDIL_NoError;

}

void loadPackage(const char* filename)
{

FILE* package;
fpos_t filesize;

if ((package = fopen(filename, "rb")) == NULL)
{

printf("File not found: %s\n", filename);
return;

}

fseek(package, 0, SEEK_END); // position to the end of the file
fgetpos(package, &filesize); // get the size of the package file
fseek(package, 0, SEEK_SET); // go back to the beginning

PD_LoadPackage(gSession, filesize, 1024L, ReadPackage, package);
fclose(package);

}

Setting the Message in the Status Slip 4
When the Dock application is communicating with you desktop application,
it displays a status slip. You can set the message displayed in this status slip
with PD_SetStatusText. This function only works when communicating with
Newton 2.1 devices, however.

Error Handling 4
Most PDIL functions return an error code indicating their success. There are
two error values that the PDIL generates: kPD_NotInitialized and
kPD_NewtonError. A kPD_NotInitialized error is returned by a function if
PD_Startup had not been called. A kPD_NewtonError is returned if a

C H A P T E R 4

PDIL Interface

PDIL Reference 4-11

NewtonScript error occurred. If a kPD_NewtonError is returned, you can call
PD_GetNewtonError to retrieve the value of that error. This value will be either
one of the values listed in “Newton Error Codes” (page 4-13) or any
NewtonScript error code from those listed in Newton Programmer’s Reference .

In addition functions that communicate with a Newton device, return any
error returned by the call back functions you provide.

Note

NewtonScript exceptions presently cause the Dock
application to disconnect. ◆

Memory Management 4
The PDIL returns a number of objects, and accepts a number of objects as
parameters. You are responsible for disposing of both objects that the PDIL
functions return, and objects that you pass into these functions. If a PDIL
function requires that a particular object exist after the function completes, it
will create a copy of that object.

PDIL Reference 4

Type Definitions 4

PD_Handle A PDIL session object.

PD_Status The status of the session.

PD_Cursor A cursor object.

C H A P T E R 4

PDIL Interface

4-12 PDIL Reference

Data Structures 4

Protocol Extension Endpoint Parameter 4

Protocol extensions are passed in an endpoint object, this endpoint has two
methods you need to use, ReadCommandData and WriteCommand.

ReadCommandData 4

endpointArg:ReadCommandData()

Reads in the parameters passed to the protocol extension in the call to
PD_CallExtension.

return value The the parameters passed to the protocol extension in
the inParams parameter to PD_CallExtension.

WriteCommand 4

endpointArg:WriteCommand(extensionID, returnValue, true)

Writes the return value of the protocol extension to the desktop application.

extensionID A four character string containing the protocol
extension’s ID.

returnValue The object to return as the outResults parameter to
PD_CallExtension.

true Always pass in true for the third parameter.

return value Unspecified; do not rely on what WriteCommand returns.

DISCUSSION

You must call this function from within your protocol extension at least one
time. Return the value nil, if you have no data to send; never call this
method twice. The first time you call this method, it is returned through
PD_CallExtension, subsequent calls must have their values returned through
PD_GetNewtonData.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-13

Constants 4

Status Constants 4

The following positive values are returned by PD_Idle:

kPD_Okay Everything is okay, nothing to do. This equal zero,
which equals kDIL_NoError.

kPD_AutoDock An AutoDock command has been received.

kPD_Cancel The user tapped the Stop button.

kPD_Disconnect The Newton device disconnected.

Error Codes 4
kDIL_NoError (0)
kDIL_ErrorBase (-98000)
kDIL_OutOfMemory (kDIL_ErrorBase - 1)
kDIL_InvalidParameter (kDIL_ErrorBase - 2)
kDIL_InternalError (kDIL_ErrorBase - 3)
kDIL_ErrorReadingFromPipe (kDIL_ErrorBase - 4)
kDIL_ErrorWritingToPipe (kDIL_ErrorBase - 5)
kDIL_InvalidHandle (kDIL_ErrorBase - 6)

kPD_ErrorBase (kDIL_ErrorBase - 600)

kPD_NotInitialized (kPD_ErrorBase - 1)
kPD_NewtonError (kPD_ErrorBase - 6)

Newton Error Codes 4
kPD_BadStoreSignature (-28001)
kPD_BadEntry (-28002)
kPD_Aborted (-28003)
kPD_BadQuery (-28004)
kPD_ReadEntryError (-28005)
kPD_BadCurrentSoup (-28006)
kPD_BadCommandLength (-28007)
kPD_EntryNotFound (-28008)
kPD_BadConnection (-28009)
kPD_FileNotFound (-28010)
kPD_IncompatableProtocol (-28011)
kPD_ProtocolError (-28012)

C H A P T E R 4

PDIL Interface

4-14 PDIL Reference

kPD_DockingCanceled (-28013)
kPD_StoreNotFound (-28014)
kPD_SoupNotFound (-28015)
kPD_BadHeader (-28016)
kPD_OutOfMemory (-28017)
kPD_NewtonVersionTooNew (-28018)
kPD_PackageCantLoad (-28019)
kPD_ProtocolExtAlreadyRegistered (-28020)
kPD_RemoteImportError (-28021)
kPD_BadPasswordError (-28022)
kPD_RetryPW (-28023)
kPD_IdleTooLong (-28024)
kPD_OutOfPower (-28025)
kPD_BadCursor (-28026)
kPD_AlreadyBusy (-28027)
kPD_DesktopError (-28028)
kPD_CantConnectToModem (-28029)
kPD_Disconnected (-28030)
kPD_AccessDenied (-28031)

Store Frames 4

A store frame contains the following slots:

Slot description

name A string for the user-visible name of the store.

signature An integer for the unique ID of the store.

totalSize An integer for the number of bytes in the store.

usedSize An integer for the number of bytes that are used.

kind Either the string “Internal” or “Card.”

readOnly Nil or non-nil indicating if the store is read only.

storeVersion The version of the store format.

defaultStore True if this is the user specified, default store, nil or
absent otherwise.

info A frame with information about the store. If you add
any slots to this frame, make sure your slot name
includes your developer signature.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-15

PD_NewtonInfo 4

A struct with the following fields:

C H A P T E R 4

PDIL Interface

4-16 PDIL Reference

Field descriptions

fNewtonID An almost unique ID which represents a particular
Newton. It is a random number from a very large
domain, so very close to unique. This number is

fManufacturer An integer indicating the manufacturer of the Newton
device.

fMachineType An integer indicating the hardware type this ROM was
built for.

fROMVersion An integer indicating the ROM version number.

fROMStage An integer indicating the language (English, German,
French) and the stage of the ROM (alpha, beta, final).

fRAMSize The amount of RAM on the Newton device.

fScreenHeight An integer representing the height of the screen in
pixels. The height takes into account the current screen
orientation.

fScreenWidth An integer representing the width of the screen in
pixels. The width takes into account the current screen
orientation.

fPatchVersion This value is 0 on an unpatched Newton device, and
non-zero otherwise.

fNOSVersion The version of the NewtonScript interpreter.

fInternalStoreSig The signature of the internal store. Note that this value
is changed with a hard reset.

fScreenResolutionV The number of horizontal pixels per inch.

fScreenResolutionH The number of vertical pixels per inch.

fScreenDepth The number of bits per pixel.

fSystemFlags A bit field. The following two bits are defined

1 = has serial number

2 = has target protocol

fSerialNumber An 8-byte object containing the unique hardware serial
number of the Newton device on those devices that
contain this hardware.

fTargetProtocol The version of the protocol used by the Dock
application. On Newton 2.1 devices this is 11, Newton

C H A P T E R 4

PDIL Interface

PDIL Reference 4-17

2.0 devices use 9 and 10.

Note

The manufacturer, machineType, ROMVersion, and ROMStage
fields provide internal configuration information and should
not be relied on. ◆

Functions 4

PD_Startup 4

DIL_Error PD_Startup()

Initializes the PDIL.

return value An error code.

DISCUSSION

You must call this function before calling any other PDIL function. It is
generally called just once at the beginning of your application, but can be
called more than once as long as an equal number of calls to PD_Shutdown are
also made.

PD_Shutdown 4

DIL_Error PD_Shutdown()

Closes the library.

return value An error code.

DISCUSSION

If this is the last call to PD_Shutdown, then all memory allocated by the PDIL
since PD_Startup was called is deallocated.

ERROR CODES

kPD_NotInitialized

C H A P T E R 4

PDIL Interface

4-18 PDIL Reference

PD_CreateSession 4

DIL_Error PD_CreateSession(PD_Handle* outSession, DIL_ReadProc
inReadProc, DIL_StatusProc inStatusProc, DIL_WriteProc inWriteProc,
void * inUserData, const char* inPassword)

Creates a new PDIL session.

outSession The new PDIL session.

inReadProc A function you supply to read bytes, see
“DIL_ReadProc” (page 3-31). This functions must not
return until the specified number of bytes has been read.

inStatusProc A function you supply to determine the number of
bytes that are waiting to be read, see “DIL_StatusProc”
(page 3-32).

inWriteProc A function you supply to write bytes, see
“DIL_WriteProc” (page 3-30). This function must not
return until the specified number of bytes has been
written.

inUserData This pointer is passed as a parameter to each of the
callback procedures.

inPassword A string representing an optional password which can
be used to protect access to your program and desktop
data. If you don't want to use the password protection,
pass an empty string ("") or NULL as the password.

return value An error code.

DISCUSSION

This function should be called after a connection from the Newton has been
accepted. The function connects to the Newton using the defined 2.0
connection protocol, and does not return until it completes.

Typically, the procedures to read and write bytes are CDIL–based functions,
but you may choose to implement them differently.

ERROR CODES

kPD_NotInitialized

C H A P T E R 4

PDIL Interface

PDIL Reference 4-19

PD_Dispose 4

DIL_Error PD_Dispose(PD_Handle inSession)

Closes the specified session by sending a disconnect command (if the
Newton is still connected).

inSession A PDIL session.

return value An error code.

DISCUSSION

Upon return, inSession is no longer valid.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_Idle 4

PD_Status PD_Idle(PD_Handle inSession)

Idles the specified session and returns the status of the connection.

inSession A PDIL session.

return value The current status of the session; see “Status Constants”
(page 4-13), or an error code if PD_Idle fails, or the ID of
a protocol extension that has returned a value accessible
with PD_GetNewtonData. Note that error values are
negative, and status values are positive.

DISCUSSION

This function must be called periodically to give the PDIL time to handle
unexpected data arriving from the Newton.

This function need not be called if you are actively communicating with the
Newton. For example, if your user interface puts up a dialog waiting for user
input, you should call PD_Idle while the dialog is displayed. However, once
the choice is made and you are issuing commands and reading responses,
PD_Idle need not be called.

C H A P T E R 4

PDIL Interface

4-20 PDIL Reference

PD_Idle calls the status procedures supplied to PD_CreateSession in the
inStatusProc parameter.

SPECIAL CONSIDERATIONS

When this function is being called, CD_Idle should not be called.

ERROR CODES

kPD_NotInitialized

PD_GetNewtonError 4

DIL_Error PD_GetNewtonError(PD_Handle inSession)

Returns the last result code sent by the Newton.

inSession A PDIL session.

return value An error code.

DISCUSSION

This function should only be called in response to receiving a
kPD_NewtonError error code. Calling at any other time returns an unreliable
result.

ERROR CODES

NewtonScript error
kPD_NotInitialized

PD_GetNewtonInfo 4

const PD_NewtonInfoPtr PD_GetNewtonInfo(PD_Handle inSession)

Returns information about the connected Newton device.

inSession A PDIL session.

return value An internal PDIL structure with information about a
Newton device, see “PD_NewtonInfo” (page 4-15).

C H A P T E R 4

PDIL Interface

PDIL Reference 4-21

DISCUSSION

The pointer returned is to the PDIL’s internal copy of the information block.
You must not alter the data in this data structure in any way. If you have not
connected to a Newton device, every field in the information block contains
all zeros.

PD_GetNewtonName 4

DIL_Error PD_GetNewtonName(PD_Handle inSession, FD_Handle*
outNewtonName)

Returns the owner name of the connected Newton device.

inSession A PDIL session.

outNewtonName An FDIL string.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

You own the returned string, and should call FD_Dispose on it when you no
longer need it. Note that it is possible that the Newton device has more than
one owner card. In this case there is no guarantee about whose name is
returned.

ERROR CODES

kPD_NotInitialized

PD_SetStatusText 4

DIL_Error PD_SetStatusText(PD_Handle inSession, const char*
inText)

Sets the text of the message displayed in the “spinning barber pole” slip.

inSession A PDIL session.

inText A string with the text to set.

return value An error code.

C H A P T E R 4

PDIL Interface

4-22 PDIL Reference

DISCUSSION

This function only works on Newton 2.1 OS devices, but fails silently on
earlier devices.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetAllStores 4

DIL_Error PD_GetAllStores(PD_Handle inSession, FD_Handle*
outStores)

Returns an array of store frames.

inSession A PDIL session.

outStores An FDIL array containing store frames, see “Store
Frames” (page 4-14).

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetDefaultStore 4

DIL_Error PD_GetDefaultStore(PD_Handle inSession, FD_Handle*
outStore)

Returns a store frame describing the default store as set by the Newton user.

inSession A PDIL session.

outStore A store frames, see “Store Frames” (page 4-14).

You are responsible for disposing of this object.

return value An error code.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-23

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_SetCurrentStore 4

DIL_Error PD_SetCurrentStore(PD_Handle inSession, FD_Handle
inStore, short inSetStoreInfo)

Sets the current store for the session.

inSession A PDIL session.

inStore An store frame containing at least the following store
frame slots: name, kind, info and signature; see “Store
Frames” (page 4-14). You may pass in kFD_NIL to set the
session to the default store as defined on the Newton
device.

You are responsible for disposing of this object.

inSetStoreInfo Pass in zero if you do not want the store’s information
frame to be set to the value of the info slot of inStore.
Pass in anything else to set the store information frame.
Only true backup/restore type programs should pass in
anything but zero, and then only when performing a
restore operation.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

The current store is used by subsequent soup and entry functions. You must
call PD_SetCurrentStore to set the store you want to operate on before
making any soup, entry, or cursor calls.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-24 PDIL Reference

PD_CreateSoup 4

DIL_Error PD_CreateSoup(PD_Handle inSession, FD_Handle
inSoupName, FD_Handle inSoupIndex)

Creates the specified soup on the current store using inSoupIndex as the array
of index frames.

inSession A PDIL session.

inSoupName An FDIL string for the name of the soup.

You are responsible for disposing of this object.

inSoupIndex An FDIL array of index spec frames; see “Single-Slot
Index Specification Frame” (page 9-5) and
“Multiple-Slot Index Specification Frame” (page 9-7) in
Newton Programmer’s Reference. Note that even if you
have only one index spec frame, it must be placed into
an array. You may pass in kFD_NIL to create a soup
without indexes.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

If inSoupName already exists, this function is the same as PD_SetCurrentSoup
and the soup index does not change.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_DeleteSoup 4

DIL_Error PD_DeleteSoup(PD_Handle inSession)

Deletes the current soup.

inSession A PDIL session.

return value An error code.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-25

DISCUSSION

The current soup is undefined after this call.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_EmptySoup 4

DIL_Error PD_EmptySoup(PD_Handle inSession)

Removes all the entries from the current soup.

inSession A PDIL session.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetAllSoups 4

DIL_Error PD_GetAllSoups(PD_Handle inSession, FD_Handle* outSoups)

Returns an array of soup names and signatures from the current store.

inSession A PDIL session.

outSoups An FDIL array of arrays. There is one element in the top
level array for each soup on the store. Each of the inner
arrays contain two elements. The first element contains
an string with the soup name, and the second element
contains an integer with the soup’s signature.

You are responsible for disposing of this object.

return value An error code.

C H A P T E R 4

PDIL Interface

4-26 PDIL Reference

DISCUSSION

Calling FD_GetLength on the outSoups array gives you the number of soups on
the store. FD_GetArraySlot allows you to extract the inner array which has the
name and signature of the soup.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_SetCurrentSoup 4

DIL_Error PD_SetCurrentSoup(PD_Handle inSession, FD_Handle
inSoupName)

Sets the current soup on the current store.

inSession A PDIL session.

inSoupName An FDIL string for the soup name.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

This function must be called before any of the entry functions.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-27

PD_GetSoupIndexes 4

DIL_Error PD_GetSoupIndexes(PD_Handle inSession, FD_Handle*
outSoupIndexes)

Returns an array of index spec frames from the current soup.

inSession A PDIL session.

outSoupIndexes An array of index spec frames. For more information
about index spec frames, see Chapter 11, “Data Storage
and Retrieval,” in Newton Programmer’s Guide.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetSoupInfo 4

DIL_Error PD_GetSoupInfo(PD_Handle inSession, FD_Handle*
outSoupInfo)

inSession A PDIL session.

outSoupInfo The current soup’s information frame.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-28 PDIL Reference

PD_SetSoupInfo 4

DIL_Error PD_SetSoupInfo(PD_Handle inSession, FD_Handle
inSoupInfo)

inSession A PDIL session.

inSoupInfo A frame to be made into the current soup’s information
frame.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

You must be very careful when using this function. You should read in the
soup information frame with PD_GetSoupInfo, access a limited number of
slots, and use this same frame when calling PD_SetSoupInfo. If you add any
slots to the soup information frame, append your developer signature to the
slot name.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_AddEntry 4

DIL_Error PD_AddEntry(PD_Handle inSession, FD_Handle inEntry,
long* outID)

Adds the specified entry, and returns the new unique ID.

inSession A PDIL session.

inEntry An FDIL frame to be made into a soup entry.

You are responsible for disposing of this object.

outID The new entry’s unique ID.

return value An error code.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-29

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_ChangeEntry 4

DIL_Error PD_ChangeEntry(PD_Handle inSession, FD_Handle inEntry)

Stores a changed entry back in the soup.

inSession A PDIL session.

inEntry A soup entry retrieved with PD_GetEntry.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_DeleteEntry 4

DIL_Error PD_DeleteEntry(PD_Handle inSession, FD_Handle inEntry)

Removes the entry from the current soup.

inSession A PDIL session.

inEntry A soup entry retrieved with PD_GetEntry or PD_Entry.

You are responsible for disposing of this object.

return value An error code.

SPECIAL CONSIDERATIONS

Entries are not removed instantaneously. It is possible to delete an entry, then
call PD_Next and PD_Prev, and retrieve the supposedly deleted entry.

ERROR CODES

error returned by communication callback function

C H A P T E R 4

PDIL Interface

4-30 PDIL Reference

kPD_NotInitialized
kPD_NewtonError

PD_DeleteEntryID 4

DIL_Error PD_DeleteEntryID(PD_Handle inSession, FD_Handle
inEntryID)

Removes the entry specified by the entry ID from the current soup.

inSession A PDIL session.

inEntryID A soup entry’s ID number, see Special Considerations.

return value An error code.

SPECIAL CONSIDERATIONS

The inEntryID parameter must be a valid ID number. If an incorrect ID is
supplied, then the next soup entry is deleted!

Entries are not removed instantaneously. It is possible to delete an entry, then
call PD_Next and PD_Prev, and retrieve the supposedly deleted entry.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_DeleteEntryIDList 4

DIL_Error PD_DeleteEntryIDList(PD_Handle inSession, FD_Handle
inEntryIDList)

Removes the entries specified by the array of entry IDs from the current soup.

inSession A PDIL session.

inEntryIDList An FDIL array of entry IDs from the current soup, see
Special Considerations.

You are responsible for disposing of this object.

return value An error code.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-31

SPECIAL CONSIDERATIONS

The inEntryIDList parameter must contain valid ID numbers. If an incorrect
ID is supplied, then the next soup entry is deleted!

Entries are not removed instantaneously. It is possible to delete an entry, then
call PD_Next and PD_Prev, and retrieve the supposedly deleted entry.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_DeleteEntryList 4

DIL_Error PD_DeleteEntryList(PD_Handle inSession, FD_Handle
inEntryList)

Removes the entries from the current soup.

inSession A PDIL session.

inEntryList An FDIL array of soup entries from the current soup.

You are responsible for disposing of this object.

return value An error code.

SPECIAL CONSIDERATIONS

Entries are not removed instantaneously. It is possible to delete an entry, then
call PD_Next and PD_Prev, and retrieve the supposedly deleted entry.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-32 PDIL Reference

PD_GetEntry 4

DIL_Error PD_GetEntry(PD_Handle inSession, FD_Handle* outEntry,
long entryID)

Retrieves the entry with the specified unique ID from the current soup.

inSession A PDIL session.

outEntry An FDIL frame for the soup entry.

You are responsible for disposing of this object.

entryID The ID of the entry to retrieve; see PD_GetEntryIDs.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetEntryIDs 4

DIL_Error PD_GetEntryIDs(PD_Handle inSession, FD_Handle*
outEntryIDs)

Returns an array of entry ID's from the current soup.

inSession A PDIL session.

outEntryIDs An FDIL array of entry IDs in the current soup.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

The resulting entry IDs can be used as a parameter to the PD_GetEntry and
PD_DeleteEntryID and PD_DeleteEntryIDList functions.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-33

PD_Query 4

DIL_Error PD_Query(PD_Handle inSession, PD_Cursor* outCursor,
FD_Handle inSoupName, FD_Handle inQuerySpec)

Performs a query on the specified soup on the current store.

inSession A PDIL session.

outCursor The cursor object created.

inSoupName An FDIL string for the soup to query, or kFD_NIL to use
the current soup.

You are responsible for disposing of this object.

inQuerySpec A query spec. You can pass kFD_NIL to create a cursor
that iterates over every entry in the soup, or a query
spec frame as specified in “Query Specification Frame”
(page 9-10) in Newton Programmer’s Reference.

You can also create complex queries that include
NewtonScript function objects as a stream file in NTK.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_CountEntries 4

DIL_Error PD_CountEntries(PD_Cursor inCursor, long* outCount)

Returns the number of entries the cursor iterates over.

inCursor A cursor object.

outCount The number of entries the cursor iterates over.

return value An error code.

ERROR CODES

error returned by communication callback function

C H A P T E R 4

PDIL Interface

4-34 PDIL Reference

kPD_NotInitialized
kPD_NewtonError

PD_DisposeCursor 4

DIL_Error PD_DisposeCursor(PD_Cursor inCursor)

Disposes of the specified cursor.

cursor A cursor object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_Entry 4

DIL_Error PD_Entry(PD_Cursor inCursor, FD_Handle* outEntry)

Retrieves the current entry from the specified cursor.

inCursor A cursor object.

outEntry An FDIL frame for the entry.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-35

PD_GotoKey 4

DIL_Error PD_GotoKey(PD_Cursor inCursor, FD_Handle inKey,
FD_Handle* outEntry)

Returns the entry at the specified key location.

inCursor A cursor object.

inKey The key of the entry to advance to. An entry’s key is the
value in the slot that was designated the index of the
soup. For example, if a soup is indexed on the
'firstName slot, "Elizabeth" is a possible key. If the soup
has a multi-slot index, this should be an array of values.
You are responsible for disposing of this object.

outEntry An FDIL frame for the entry, or kFD_NIL if there is no
entry with the specified key.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_Move 4

DIL_Error PD_Move(PD_Cursor inCursor, long inOffset, FD_Handle*
outEntry)

Moves the specified cursor the specified number of entries.

inCursor A cursor object.

inOffset How many entries to move over, this can be a positive
or negative integer.

outEntry An FDIL frame for the entry the cursor points to in its
new position, or kFD_NIL if moving over this many
places causes the cursor to run of the end of the list.

You are responsible for disposing of this object.

return value An error code.

C H A P T E R 4

PDIL Interface

4-36 PDIL Reference

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_Next 4

DIL_Error PD_Next(PD_Cursor inCursor, FD_Handle* outEntry)

Advances the cursor to the next entry and returns this entry.

inCursor A cursor object.

outEntry An FDIL frame for the entry the cursor points to in its
new position, or kFD_NIL if at the end of the list.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_Prev 4

DIL_Error PD_Prev(PD_Cursor inCursor, FD_Handle* outEntry)

Backs up the cursor to the previous entry and returns this entry.

inCursor A cursor object.

outEntry An FDIL frame for the entry the cursor points to in its
new position, or kFD_NIL if at the beginning of the list.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-37

PD_Reset 4

DIL_Error PD_Reset(PD_Cursor inCursor, FD_Handle* outEntry)

Positions the cursor to the beginning and returns the first entry.

inCursor A cursor object.

outEntry An FDIL frame for the entry the cursor points to in its
new position.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_ResetToEnd 4

DIL_Error PD_ResetToEnd(PD_Cursor inCursor, FD_Handle* outEntry)

Positions the cursor to the end and returns the last entry.

inCursor A cursor object.

outEntry An FDIL frame for the entry the cursor points to in its
new position.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-38 PDIL Reference

PD_LoadPackage 4

DIL_Error PD_LoadPackage(PD_Handle inSession, long lenPackage,
long chunkSize, DIL_ReadProc readProc, void* userData)

Loads a package.

inSession A PDIL session.

lenPackage The number of bytes in the package.

chunkSize The number of bytes to read at a time. It is
recommended that you use a 1K, 1024, chunk size.

readProc A function you supply to read bytes, see
“DIL_ReadProc” (page 3-31).

userData A pointer passed to your readProc.

return value An error code.

DISCUSSION

The readProc is called to read chunkSize bytes of data at a time (until the last
call which may be less). If the readProc returns an error (either a disk error or
the user cancels) the package load is terminated and the connection is
broken. The userData parameter is passed to the readProc, and is typically the
platform representation of the package file.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-39

PD_LoadExtension 4

DIL_Error PD_LoadExtension(PD_Handle inSession, long
inExtensionID, FD_Handle inExtension)

Loads a protocol extension.

inSession A PDIL session.

inExtensionID An ID that identifies this protocol extension. These IDs
are usually specified by a set of four characters. The
all-lowercase IDs are reserved by Apple.

inExtension A function object to be executed when the protocol
extension is called, see DISCUSSION.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

The inExtension function object is created in NTK and saved as a stream file.
The function object can then be retrieved from the stream file with the
FD_Unflatten function. When this function object is eventually called, with
PD_CallExtension, it is passed in an endpoint object. There are two methods
of this endpoint object you need to use, ReadCommandData and WriteCommand, to
read in a set of parameters and write out a return value. These endpoint
object methods are described in “Protocol Extension Endpoint Parameter”
(page 4-12).

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-40 PDIL Reference

PD_CallExtension 4

DIL_Error PD_CallExtension(PD_Handle inSession, long
inExtensionID, FD_Handle inParams, FD_Handle* outResults)

Calls a protocol extension added with PD_LoadExtension.

inSession A PDIL session.

inExtensionID The extension ID used in the call to PD_LoadExtension.

inParams The parameters to pass to the protocol extension.

You are responsible for disposing of this object.

outResults The result returned by the protocol extension.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

PD_GetNewtonData 4

DIL_Error PD_GetNewtonData (FD_Handle inSession, FD_Handle*
outNewtonData)

Retrieves data from a second, or subsequent, call to the endpoint
WriteCommand method from a protocol extension.

inSession A PDIL session.

outNewtonData The result returned by the protocol extension, or
kFD_NIL if there is no pending value.

You are responsible for disposing of this object.

return value An error code.

DISCUSSION

You are notified of when to call this function with PD_Idle.

C H A P T E R 4

PDIL Interface

PDIL Reference 4-41

ERROR CODES

kPD_NotInitialized

PD_RemoveExtension 4

DIL_Error PD_RemoveExtension(PD_Handle inSession, long
inExtensionID)

Removes the specified protocol extension.

inSession A PDIL session.

inExtensionID The extension ID used in the call to PD_LoadExtension.

return value An error code.

DISCUSSION

You need not call this function. The protocol extension is automatically
removed when the PDIL session terminates. You may want to call it to free
up heap space, however.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-42 PDIL Reference

PD_CallGlobalFunction 4

DIL_Error PD_CallGlobalFunction(PD_Handle inSession, const char*
inFunctionName, FD_Handle inParamsArray, FD_Handle* outResult)

Calls a global function, returning the function’s result.

inSession A PDIL session.

inFunctionName The name of the function to call.

inParamsArray An FDIL array with the parameters to pass to
inFunctionName. If the function takes no parameters,
pass in an empty array.

You are responsible for disposing of this object.

outResult The return value of inFunctionName.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

PDIL Reference 4-43

PD_CallRootMethod 4

DIL_Error PD_CallRootMethod(PD_Handle inSession,const char*
inMethodName, FD_Handle inParamsArray, FD_Handle* outResult)

Calls a root view method, returning the function’s result.

inSession A PDIL session.

inMethodName The name of the root method to call.

inParamsArray An FDIL array with the parameters to pass to
inMethodName. If the function takes no parameters, pass
in an empty array.

You are responsible for disposing of this object.

outResult The return value of inMethodName.

You are responsible for disposing of this object.

return value An error code.

ERROR CODES

error returned by communication callback function
kPD_NotInitialized
kPD_NewtonError

C H A P T E R 4

PDIL Interface

4-44 PDIL Reference

PDIL Summary 4

Type Definitions 4
PD_Handle
PD_Status
PD_Cursor

Data Structures 4

Protocol Extension Endpoint Parameter 4

endpointArg:ReadCommandData()
endpointArg:WriteCommand(extensionID, returnValue, true)

Constants 4

Status Codes 4
kPD_Okay
kPD_AutoDock
kPD_Cancel
kPD_Disconnect

Error Codes 4
kDIL_NoError
kDIL_ErrorBase
kDIL_OutOfMemory
kDIL_InvalidParameter
kDIL_InternalError
kDIL_ErrorReadingFromPipe
kDIL_ErrorWritingToPipe
kDIL_InvalidHandle

C H A P T E R 4

PDIL Interface

PDIL Reference 4-45

kPD_ErrorBase
kPD_NotInitialized
kPD_NewtonError

Newton Error Codes 4
kPD_BadStoreSignature
kPD_BadEntry
kPD_Aborted
kPD_BadQuery
kPD_ReadEntryError
kPD_BadCurrentSoup
kPD_BadCommandLength
kPD_EntryNotFound
kPD_BadConnection
kPD_FileNotFound
kPD_IncompatableProtocol
kPD_ProtocolError
kPD_DockingCanceled
kPD_StoreNotFound
kPD_SoupNotFound
kPD_BadHeader
kPD_OutOfMemory
kPD_NewtonVersionTooNew
kPD_PackageCantLoad
kPD_ProtocolExtAlreadyRegistered
kPD_RemoteImportError
kPD_BadPasswordError
kPD_RetryPW
kPD_IdleTooLong
kPD_OutOfPower
kPD_BadCursor
kPD_AlreadyBusy
kPD_DesktopError
kPD_CantConnectToModem
kPD_Disconnected
kPD_AccessDenied

Store Frames 4
{name: string,
signature: integer,
totalSize: integer,
usedSize: integer,
kind: string,

C H A P T E R 4

PDIL Interface

4-46 PDIL Reference

readOnly: Boolean,
storeVersion: integer,
defaultStore: Boolean,
info: frame}

PD_NewtonInfo 4
typedef struct PD_NewtonSystemInfo
{

long fNewtonID;
long fManufacturer;
long fMachineType;
long fROMVersion;
long fROMStage;
long fRAMSize;
long fScreenHeight;
long fScreenWidth;
long fPatchVersion;
long fNOSVersion;
long fInternalStoreSig;
long fScreenResolutionV;
long fScreenResolutionH;
long fScreenDepth;
long fSystemFlags;
long fSerialNumber[2];
long fTargetProtocol;

} PD_NewtonSystemInfo;

Functions 4
DIL_Error PD_Startup()
DIL_Error PD_Shutdown()
DIL_Error PD_CreateSession(PD_Handle* outSession,

DIL_ReadProc inReadProc, DIL_StatusProc inStatusProc,
DIL_WriteProc inWriteProc, void * inUserData,
const char* inPassword)

DIL_Error PD_Dispose(PD_Handle inSession)
PD_Status PD_Idle(PD_Handle inSession)
DIL_Error PD_GetNewtonError(PD_Handle inSession)
const PD_NewtonInfoPtr PD_GetNewtonInfo(PD_Handle inSession)
DIL_Error PD_GetNewtonName(PD_Handle inSession,

FD_Handle* outNewtonName)
DIL_Error PD_SetStatusText(PD_Handle inSession, const char* inText)
DIL_Error PD_GetAllStores(PD_Handle inSession, FD_Handle* outStores)

C H A P T E R 4

PDIL Interface

PDIL Reference 4-47

DIL_Error PD_GetDefaultStore(PD_Handle inSession, FD_Handle* outStore)
DIL_Error PD_GetCurrentStore(PD_Handle inSession, FD_Handle* outStore)
DIL_Error PD_SetCurrentStore(PD_Handle inSession, FD_Handle inStore,

short inSetStoreInfo)
DIL_Error PD_CreateSoup(PD_Handle inSession, const char* inSoupName,

FD_Handle inSoupIndex)
DIL_Error PD_DeleteSoup(PD_Handle inSession)
DIL_Error PD_EmptySoup(PD_Handle inSession)
DIL_Error PD_GetAllSoups(PD_Handle inSession, FD_Handle* outSoups)
DIL_Error PD_GetCurrentSoup(PD_Handle inSession, FD_Handle* outSoup)
DIL_Error PD_SetCurrentSoup(PD_Handle inSession, FD_Handle inSoupName)
DIL_Error PD_GetSoupIndexes(PD_Handle inSession,

FD_Handle* outSoupIndexes)
DIL_Error PD_GetSoupInfo(PD_Handle inSession, FD_Handle* outSoupInfo)
DIL_Error PD_SetSoupInfo(PD_Handle inSession, FD_Handle inSoupInfo)
DIL_Error PD_AddEntry(PD_Handle inSession, FD_Handle inEntry,

long* outID)
DIL_Error PD_ChangeEntry(PD_Handle inSession, FD_Handle inEntry)
DIL_Error PD_DeleteEntry(PD_Handle inSession, FD_Handle inEntry)
DIL_Error PD_DeleteEntryID(PD_Handle inSession, FD_Handle inEntryID)
DIL_Error PD_DeleteEntryIDList(PD_Handle inSession,

FD_Handle inEntryIDList)
DIL_Error PD_DeleteEntryList(PD_Handle inSession, FD_Handle inEntryList)
DIL_Error PD_GetEntry(PD_Handle inSession, FD_Handle * outEntry,

long entryID)
DIL_Error PD_GetEntryIDs(PD_Handle inSession, FD_Handle* outEntryIDs)
DIL_Error PD_Query(PD_Handle inSession, PD_Cursor* outCursor,

FD_Handle inSoupName, FD_Handle inQuerySpec)
DIL_Error PD_CountEntries(PD_Cursor inCursor, long* outCount)
DIL_Error PD_DisposeCursor(PD_Cursor inCursor)
DIL_Error PD_Entry(PD_Cursor inCursor, FD_Handle* outEntry)
DIL_Error PD_GotoKey(PD_Cursor inCursor, FD_Handle inKey,

FD_Handle* outEntry)
DIL_Error PD_Move(PD_Cursor inCursor, long inOffset,

FD_Handle* outEntry)
DIL_Error PD_Next(PD_Cursor inCursor, FD_Handle* outEntry)
DIL_Error PD_Prev(PD_Cursor inCursor, FD_Handle* outEntry)
DIL_Error PD_Reset(PD_Cursor inCursor, FD_Handle* outEntry)
DIL_Error PD_ResetToEnd(PD_Cursor inCursor, FD_Handle* outEntry)
DIL_Error PD_LoadPackage(PD_Handle inSession, long lenPackage,

long chunkSize, DIL_ReadProc readProc, void* userData)
DIL_Error PD_LoadExtension(PD_Handle inSession, long inExtensionID,

FD_Handle inExtension)
DIL_Error PD_CallExtension(PD_Handle inSession, long inExtensionID,

FD_Handle inParams, FD_Handle* outResults)
DIL_Error PD_GetNewtonData (FD_Handle inSession,

C H A P T E R 4

PDIL Interface

4-48 PDIL Reference

FD_Handle* outNewtonData)
DIL_Error PD_RemoveExtension(PD_Handle inSession, long inExtensionID)
DIL_Error PD_CallGlobalFunction(PD_Handle inSession,

const char* inFunctionName, FD_Handle inParamsArray,
FD_Handle* outResult)

DIL_Error PD_CallRootMethod(PD_Handle inSession,
const char* inMethodName, FD_Handle inParamsArray,
FD_Handle* outResult)

